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II. The Two-Particle Entropy S~ 
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This paper defines, and then evaluates perturbatively, an information-theoretic 
notion of entropy $2 for a system of N interacting particles which assesses an 
observer's limited knowledge of the state of the system, assuming that he or she 
can measure with arbitrary precision all one-particle observables and correlations 
involving pairs of particles, but is completely ignorant of the form of any 
higher-order correlations involving three or more particles. By construction, this 
S2(t) involves only the reduced two-particle distribution functions, or density 
matrices, f2(i, j )  at time t, and, though the implementation of a "subdynamics," 
dS2(t)/dt can be realized in terms ofthef2(i,j) 's at retarded times t - ~. A similar 
line of reasoning demonstrates that the "most probable" three-particle fa(i,J, k) 
consistent with a knowledge of the f2's is precisely that f3 suggested by the 
Kirkwood, or cluster, decomposition. 

1. R E C A P I T U L A T I O N  AND M O T I V A T I O N  

The objective of this and  a c o m p a n i o n  paper  (Kandrup ,  1988a, hen-  
ceforth denoted  Paper  I) is to define informat ion- theore t ic  measures  of 
en t ropy appropr ia te  for an observer  who,  in p rob ing  the state of  some 
N-par t ic le  system, can measure  with arbi trary precis ion the expectat ion 

values of  all one-par t ic le  observables,  and  correlat ions involving some 
n u m b e r  p of  the particles,  bu t  is totally ignoran t  of the form of any 

correlat ions involving more than  p particles. 
It is a ssumed  that the system unde r  cons idera t ion  is characterized by 

an  N-par t ic le  d is t r ibut ion  funct ion,  or densi ty matr ix , /~ ,  the evolut ion of 
which is governed by a Liouvil le equa t ion  

Otx/Ot = - L I x  (1.1) 
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The restriction to p-particle observables means, however, that one can only 
access the reduced p-particle density matrices 

f p ( i , , . . . , i p )  =- I~ T r j / z ( 1 , . . . , N )  (1.2) 
j # i l ,...,ip 

where Trj denotes a trace over the degrees of freedom of the j th  particle. 
The object is to construct from these fp's a suitable measure of entropy Sp. 

The intuition is the following. If the system is characterized by only 
minimal correlations involving more than p particles, a knowledge of the 
fp's provides an excellent characterization of the state of the system, so that 
the p-particle entropy Sp should be small. Alternatively, if significant higher- 
order correlations are present, a knowledge of the f / s  provides only a 
mediocre characterization of the system, so that Sp should instead be large. 
The evolution of many realistic systems leads typically to a systematic 
growth of correlations and, as such, this measure of entropy can be expected 
often to increase as time goes on. 

The prescription for constructing the Sp's is straightforward. Suppose 
that one has access to the p-particle reduced distribution functions, or 
density matrices, fp for some p < N, but that nothing else about the system 
is known. There exist then infinitely many candidate N-particle /2's con- 
sistent with the fp's. For arbitrary/.7's of this form, consider the functional 

S[/2] = -Tr /2  log/2 (1.3) 

where Tr = l-[j Trj. Now find that/2 which maximizes the functional S[/2] 
and define for this maximizing/z ~ an entropy 

Sp -- S[/z ~] = -Tr /~P l o g / ~  (1.4) 

It follows immediately from a Lagrange multiplier argument that /z  
must factorize into a product of contributions z p ( i l , . . . ,  ip) involving all 
possible p-particle groupings, i.e., that 

tz~ = 1-[ z p ( i l , . . . ,  ip) (1.5) 
q < . . . <  i, 

where the zp's are chosen to satisfy the constraints 

H Trj/2 = f p ( i l , . . . ,  ip) (1.6) 
j ~ i! ,...,ip 

When p = N ,  zp=/x, so that one recovers the Gibbs entropy SN = 
-Tr /z  log/z. Alternatively, when p = 1, zp(i)=f~(i) ,  so that one recovers 
the Boltzmann entropy 

$1 = -Tr /x~  log/z~ = - E  Tr, f~(i) log f~(i) (1.7) 
i 

This latter limit is "natural" since, working solely at the level of a one-particle 
kinetic theory, one can often derive perturbatively an H-theorem inequality 
dSm/ dt >- O. 
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It also follows that Sp+~(t) -< Sp(t) for all times t, with equality holding 
if and only if zp+l factorizes into a product of p-particle s In particular, 
this equality requires that no "irreducible" (p + 1)-particle correlations be 
present, so that zp+l or fp+l can be realized in terms of the fp's. In the 
absence of interactions, the "amount"  of  correlations cannot change, so 
that the Liouvil[e equation (1.1) implies that dSp/dt =- O. If, however, interac- 
tions are present, dSp/dt need not vanish except for p = N. Indeed, suppose 
that, at some time to, ~(to) =/zP(to). It then follows that, for all later times, 
Sp(t) >-Sp(to), with equality holding if and only if, at time t, once again 
/z(t) = tzP(t). If  no correlations are present initially, interactions can only 
generate correlations, so that Sp can only increase. 

It is clear that, in the presence of interactions, dSp/dt, unlike Sp itself, 
cannot be expressed as a local functional o f / z  p. Thus, e.g., for two-body 
interactions the BBGKY hierarchy (see, e.g., Balescu, 1975) implies that 
dSp(t)/dt involves/xP+l(t).  What one can, however, hope to show is that 
/ ~  satisfies a closed "subdynamics" whereby alzP(t)/at, and hence 
dSp(t)/dt, can be realized as a functional of/.L P(t - ~-). This is, e.g., possible 
for p =  1. 

Changes in Sp are by construction related to changes in the "amount"  
of correlations and, as such, Sp will increase only when correlations grow. 
When, as required by the Poincar6 recurrence theorem (Zermelo, 1896), 
the correlations eventually decay, Sp must decrease correspondingly. The 
periodicities or near periodicities manifesting this recurrence will, however, 
be lost in any perturbation theory analysis, and it is for this reason that 
one can nevertheless derive perturbatively an H-theorem dS~/dt >-0. 

Paper I examined most of the aforementioned properties of Sp for the 
special case p = 1, where one recovers the Boltzmann entropy. The object 
here is to generalize the analysis to the case p = 2. This is an important test 
of  the entire program, since the case p = 1 is in many respects well nigh 
trivial. Thus, e.g., the Boltzmann entropy $1 is a well-known object, whereas 
the corresponding Sp's for p > 1 have not yet been considered. 

This is, however, also an issue of some practical importance, since 
there exist physically interesting situations in which the two-particle f2(i, j ) 's ,  
and hence presumably $2, are natural objects to consider. Thus, e.g., it is 
well known (see, e.g., Peebles, 1980, and references therein) that the large- 
scale clustering of galaxies is characterized by two- and three-particle 
correlation functions which satisfy striking scaling and symmetry properties. 
One natural question to ask, therefore, is whether the observed clustering 
corresponds to a low- or high-entropy state (Kandrup, 1988b). 

Section 2 of this paper uses perturbative techniques to obtain approxi- 
mate formulas fo r /z~  and $2. Section 3 then demonstrates that dS2(t)/dt 
can be expressed nonlocally in terms of the f2's at retarded times t - ~ .  
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Section 4 turns to the related issue of determining the "most likely" or "best 
guess" reduced objects f3, f 4 , . . ,  consistent with a knowledge of the f2's. 
All of  this, like the contents of Paper I, makes sense for systems either 
classical or quantum mechanical. Section 5 concludes by showing that the 
classical and quantum descriptions differ fundamentally in the form of the 
Sp's which they would assign to a pure state. 

2. THE FORM OF THE TWO-PARTICLE ENTROPY 

The object here is to realize S2(t) explicitly as a functional of the 
two-particle f2's at time t. To avoid superfluous subscripts, Sections 2 
and 3 will implement a change of notation, namely f~(i)=-f(i)  and 
f2(i,]) =- g(i,j).  

If g ( i , j )=- f ( i ) f ( j ) ,  i.e., if no correlations are present, it is clear that 
one should pick 

z2( i,j) = [f( i)f(j)  ] ~/( N-1) (2.1) 

so that 2 = ~ and $2 = $1. If, alternatively, correlations do exist, z2(i,j) 
will assume a more complicated form. Indeed, it seems difficult, if not 
impossible, to obtain a closed-form expression for z2 in terms of the g(i,j)'s. 
What is, however, straightforward is to evaluate z2 perturbatively in the 
limit that the two-particle correlations are weak. 

Thus, writing 

g(i,j)  =f ( i ) f ( j ) [1  + Ay(i, j)]  (2.2) 

where IAt<< 1, one finds that, working to O(A), 

z2(i,j) = g( i , j ) / [ f ( i ) f ( j ) ]  (N-2)/(N-1) (2.3) 

whence 

rN 1 2 N N  N } 
I~R = rI g(i,j)~- f ( k )  l + h  ~ y(i , j)  (2.4) 

i < ' j =  1 k = l  i < j = l  

That this tz~ really is an approximate solution follows trivially from the 
observation that 

Tr j f ( k ) f ( j ) y ( j ,  k )=Trjg( j ,  k ) - T r j f ( j ) f ( k ) = O  (2.5) 

This ~ implies a three-particle 

h(i,j, k ) = f ( i ) f ( j ) f ( k ) [ l + h y ( i , j ) + A y ( i ,  k )+hy ( j ,  k)] 2.6) 

What equation (2.6) says is that the only correlations manifest in the 
three-particle distribution function, or density matrix, h(i,j, k) are those 
induced by the presence of two-particle correlations. It is in this sense that 
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h(i,j ,  k) contains no "irreducible" three-particle correlations. Note also 
that the form of h predicted by (2.6) is nothing other than that suggested 
by a Kirkwood (1935), or cluster, decomposition, truncated at O(A). 

This expression is not, however, valid to O(A 2). Rather, one computes 
that, to this order, 

tX2R = f ( l )  l-[ f ( i ) f ( j )  
1=1 i<j=l  

x [ l + h T ( i , j ) - h  2 Y. T r k f ( k ) T ( i , k ) T ( j , k ) ]  (2.7) 
k~ i , j  

or, in terms of the g(i,j) 's,  that 

FN q2-N 
tXR = f(1) II {g(i , j)  

I i < j = l  

- Y, [ T r k g ( i , k ) g ( j , k ) f - l ( k ) - f ( i ) f ( j ) ] }  (2.8) 
k r  

This again seems reasonable, since it implies a three-particle 

h(i,j ,  k) = f ( i ) f ( j ) f ( k ) [1  + AT(/,j) + AT(i, k) + AT(j, k) 

+ h 2 v( i , j )T( j ,  k)+A2v(i, k)v(j ,  k)+ h2T(i, j)T(i ,  k) 

- A 2 Trj f ( j ) T ( i , j ) y ( j ,  k ) - A  2 Trk f (  k)y(i,  k)y( j ,  k) 

- h  2 Tr, f ( i )T( i , j )T( i ,  k)] (2.9) 

The first seven terms here correspond to the Kirkwood expansion truncated 
at O(A2), and the last three implement corrections which ensure that 

Trk h( i,j, k) =- g(i , j)  (2.10) 

These corrections can be neglected only if one assumes that the quantity 
Tr i f ( i ) v ( i , j )T ( i ,  k) is somehow small. As will be discussed in Section 4, 
this can in fact be justified in a thermodynamic limit where the volume V 
of the system ~ co. 

More generally, one can calculate z2(i,j) to O(h"),  obtaining thereby 
an expression of the general form 

J ~ 

tXR = f ( l )  I] f ( i ) f ( j )  1+ A X.(Z,J) 
I i<j=l  n = l  

=-- f(1) I1 g( i , j ) [ l+t ) ( i , j ) ]  (2.11) 
I i < j = l  

this corresponding to 

z2(i,j) = g(i,j)[1 + ~( i , j ) ] / [ f ( i ) f ( j ) ]  (N-2)/(N-') (2.12) 

where •(i,j) is itself O(A2). 
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It follows that 

i<j i log 

= - ~ Tri Trjg(i , j )  log z2(i,j) (2.13) 
i<j  

or, to O(h2), that 
$2 = S~-  (h2/2) Y~ Tri Tr~f(i)f(j)3,2(i , j)  < - St (2.14) 

i < j  

where, of  course, 

N 

$1 = - ~ Tr i f ( i )  logf ( i )  (2.15) 
i = 1  

Equation (2.14) demonstrates explicitly that the one-particle entropy St is 
in fact a maximum with respect to deviations from a pure product state 
induced by small pair correlations. 

More generally, by inserting into (2.13) the z2 of (2.12), one can write 
the two-particle entropy in the form 

N 

$ 2 = -  Y. Tri Trig(i , j )  logg( i , j )  
i < j = l  

N 

+ ( N - 2 )  E T r f ( i ) l o g f ( i )  
i = 1  

N 

- • Tr, T r jg ( i , j ) l og[ l+~( i , j ) ]  (2.16) 
i < j = l  

This admits to a natural interpretation. The first term represents the "entropy 
of pairs" associated with each pairing of i and j. The second represents a 
normalization which ensures that, in the absence of correlations, $2 = $1. 
And finally, the third term represents the effects of induced correlations 
involving more than two particles. The key point is that finite two-particle 
correlations will induce additional correlations involving three or more 
particles; and these induced correlations will also contribute to the two- 
particle entropy. 

3. THE TIME DERIVATIVE dS2(t)/dt 

As discussed in Paper I, one beautiful property of ~ ~ is that it satisfies 
a closed "subdynamics" in the sense that a/~l( t ) /at  can be realized as a 
nonlocal functional o f / ~  at retarded times t -  r. What this means is that 
dSt (t)/dr, like St (t) itself, can be expressed solely in terms of  the "physically 
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accessible" f ( i ) ' s .  A natural question to ask, therefore, is whether dS2(t)/dt 
can be expressed similarly as a functional of the g(i,j)'s at retarded times. 
Given that one is lacking a closed-form expression for /z~,  this might seem 
difficult, but, given the observation that /x  2, and hence $2, is constructed 
solely in terms of  the g's, this in fact proves possible. All that one need do 
is derive exact equations expressing Og(i,j)/Ot in terms of all the g(k, l)'s 
and then use these relations to evaluate dS2/dt for the perturbative S2's 
generated as in Section 2. 

To derive the desired expressions for Og/Ot, what one must do is 
introduce some splitting of the t rue /z  into pieces/xv and tzl, for which 

II Trk/zp(1, . . . ,  N)=g( i , j )  (3.1) 
k~i,j 

and then construct explicitly a "projection operator" P which implements 
the splitting canonically. One such prescription has already been proposed 
by Kandrup and Hill Kandrup (1984) in their analysis of galaxy clustering. 

Suppose, for simplicity, that N is even. There are then ( N -  1)!! ways 
in which the N particles can be parceled into pairs, these corresponding 
to the product  g(1, 2)g(3, 4) �9 �9 �9 g(N - 1, N) and all possible permutations 
thereof. What one is instructed to do is add up all these permutations, 
divide through by an overall normalization ( N - 3 ) !  !, and then substract 
off ( N - 2 )  times the uncorrelated/z~:  

1 
[sum o f ( N -  1)!! permutations of g(1,2) �9 �9 . g ( N -  1, N)]  P4' - ( N _ 3 ) !  ! 

N 

- ( N - 2 )  [I f( i)  (3.2) 
i = l  

The normalizations ( N - 3 ) ! !  and - ( N - 2 )  ensure that, to O(A), 

tze= f (k)  1+ 3~ AT(i,j) (3.3) 
k = l  i < j = l  

in agreement with (2.4). At least to lowest nontrivial order, /.~p coincides 
with the true tz~. 

As discussed in Paper I, the key idea, given such a /ze ,  is to construct 
a linear operator P,p, the form of which depends on /Zp (and hence 
parametrically on time), which satisfies three basic requirements (cf. Willis 
and Picard, 1974): 

1. At any given time, 

P~p/z = jLLp 

2. For any s~(1,. . . ,  N) ,  

P,p(t2)P,~<,,)~:(1,..., N)  = P,p<,2)se(1,..., N)  for t 2 -  > t, (3.5) 
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3. At any given time t, the commutator 

[ P~p, O/Ot]tz =- 0 (3.6) 

The crucial fact is that if, at some time to, # = #p, the Liouville equation 
(1.1) then implies the nonlinear relation 

Ol~e (t)/Ot + PLI~p (t) 

IO ~ - tO = d~-P(t)L(t)~d(t, t -~ ' )[1-P(t-~ ' )]L( t - ' r ) l~p(t -~" ) 

(3.7) 

where P(t) denotes the operator P~p evaluated for tzp(t), and ~q is an 
operator built solely from P and L. And, by integrating over any N -  2 of 
the particle variables, (3.7) yields an equation for Og(i,j)/Ot in terms of 
~ p ( t - ~ ' )  which is, by construction, a function only of the g(k, l)'s. An 
explicit realization of  P~p is presented in Kandrup and Hill Kandrup (1984), 
which also discusses in detail the form of the equations for Og/Ot. 

One knows that if, initially,/~ (to) =/z~(to),  then $1 = $2 = SN. And one 
knows further that interactions among the particles will generate correlations 
which induce at least an initial increase in $1 and $2. A key piece of intuition, 
which, however, remains to be understood further, is that $1 will increase 
more rapidly than $2. One of the principal conclusions of  Paper I was that, 
for the special case of (well-behaved) two-body interactions, 

I d2Sl(t) to dSl(t) = 0 and = a2> 0 (3.8) 
dt to dt2 

so that, for at least short times ( t - t o ) ,  

Sl(t) = S~(to)+�89 to)2+ �9 . .  (3.9) 

Equation (3.8) is easy to understand. $1 will change only by virtue of 
nontrivial correlations y( i , j ) ;  and thus, if initially no correlations are 
present, dS~/dt must vanish. Only as these correlations are generated is 
there a "source" for changes on S~, so that the initial increase in S~ can 
only be of order ( t - t o )  2. In a similar sense, one anticipates that $2 can 
change only in the presence of  three-body correlations; and thus, one expects 
that 

] d2S2(t)] dS2(t) = 0 = - -  (3.10) 
dt ,o dt2 ,o 

whereas 

d3S~( t) I 
I =bE > 0  (3.11) 

dt3 I to 
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The increase in $2 from an inital totally uncorrelated state should only be 
of order ( t  - to) 3. 

To verify (3.10) is in fact straightforward: given that no initial correla- 
tions are present, it suffices to verify these equalities in the weak coupling 
limit of (2.14), considering $2 only to O(A2). Thus, if one defines 

G( i,j) =- Af( i)f(j)y( i,j) (3.12) 

and observes that, by assumption, G(i,j; to)-O, it follows that 

aS2 _,dS1 - • Tr~ G(i,j) OG(i,j) 
dt *o dt ,o ~<j [ f ( i ) f ( j )  Ot 

G2(i'J) Oo, }1 ~, f( i) f( j)  =- 0 (3.13) 
2f2(i)f2(j) tO 

Similarly, one computes 

d2S2 = d2Sa ., ~-1~ .,[OG( i,J)'~ 2 ] 
,o dt 2 ,o- ~ :xr` TrjS-l(t) j  t , J ) ~ T  ) I,o (3.14) 

In this case, d2S2/dt 2 is the difference between two terms, each of which 
is intrinsically nonnegative. One knows, however, from Paper I that, in the 
absence of initial correlations, 

Otx)(to)/Ot = -(1 -P)LtX~R(to)= - E ak, U f ( m )  (3.15) 
k < l  m 

where Akt denotes a "fluctuating" Liouville operator involving particles k 
and l, so constructed that 

Trg Aktf(k)f(1) =-- 0 (3.16) 

Thus, it follows immediately that 

aG(i,j; to)lOt =-Aof ( i ) f ( j )  (3.17) 

However, one knows also that 

11 I dt 2 = T r  f(1) i~<j Aij Hf (k )  

= Y~ Tri Tu[f(i)f(j)]-l]Auf(i)f(j)] 2 (3.18) 
i < j  

where the second equality follows from (3.16). By inserting these last two 
relations into (3.14), one sees that, in the absence of initial correlations, 
d2S2/dt2=-O at time t =  to. 
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It should perhaps be noted that, strictly speaking, the analysis 
leading to (3.8)-(3.10) requires well-behaved interactions derived from a 
Hamiltonian H~(lxol) which remains bounded as Ixijl-~ 0. Consider, e.g., a 
classical self-gravitating cosmology with H~oClxol -~, for which this 
criterion is not satisfied. A careful analysis then shows that (Kandrup, 
1988c), even though Sl( to+At)> S2(to+At), for short times both dS~(to+ 
At) /d t  and dS2(to+At)/dt are in fact independent of At! The perturbative 
analysis considered here fails beause 

Tri Trj Ao.( t2)A~j( t ,)f( i ) f ( j  ) (3.19) 

diverges in the coincidence limit t2--> q. 

4. THE "MOST LIKELY" THREE-PARTICLE f3(i,j ,  k) 

The construction of the two-particle $2 entails first evaluating the "most 
likely" N-particle / ~  consistent with some given fz(i,j)'s. Of more direct 
physical interest, however, are the most likely three- or four-particle fq's. 
Thus, e.g., if one knows bothf2(i,j)  andf3(i,j, k), it is natural to ask whether 
the observed f3 is the "most likely" f3 consistent with f2 or whether, 
alternatively, it is somehow "less likely." 

The most likely f3 can be derived by maximizing the functional 

3 

~'[F3] = - -  ~r I Tr, F3(1, 2, 3) log F3(1, 2, 3) (4.1) 
i = 1  

subject to the constraints 

Trk F3( i,j, k) = f2( i,j) (4.2) 

This leads obviously to the demand that the most likely 

f3(i,j, k) = Z2(i,j)Z2(i, k)Z2(j, k) (4.3) 

where the Lagrange multipliers Z2 must be chosen to implement the con- 
straints. In this sense, the analysis is completely analogous to that leading 
to/x~.  The crucial difference here is that the Z2's can in fact be evaluated 
exactly in a thermodynamic limit. 

Suppose now that  

f2( i,j) = f l(  i)fl(j)[1 + ~:(i,j)] (4.4) 

where ~(i,j)---Ay(i,j).  The intuition of Section 2 then suggests that one 
look for a solution 

Z2( i,j) =- [fl( i)f~(j) ]~/2[1 + ~( i,j) ]S( i,j) (4.5) 
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where S(i,j) is a new unknown. And, with this Ansatz, (4.2) yields 

f2(i,j) =f2(i,j)S(i,j) Trkfl(k)[l+~(i,  k)][l+~:(j ,  k)]S(i, k)S(j, k) (4.6) 

What remains to be shown is that, for sufficiently large systems, S(i,j) ~- 1. 
Specifically, consider the thermodynamic limit in which the number N 

and the volume V diverge, but the average density n =-- N~ V remains finite. 
One knows of course [see (2.5)] that 

Trkf~(k)~(i, k) -~ 0 (4.7) 

so that, if S(i,j) = 1, equation (4.6) reduces to 

1 =Trkf~(k)[l+~(i, k)+~(j, k)] 

o r  

Trkf~(k)~(i, k)~(j, k) = 0 (4.8) 

It is, however, clear that (4.8) holds in this thermodynamic limit provided 
that the ~ R of any two-particle correlations is finite.. Thus, on 
dimensional grounds, the left-hand side of (4.8) is of order v~ V, where 
V ~ R3; and, in the thermodynamic limit, v~ V ~  O. 

The net result is that, for sufficiently large systems (v/V<< 1), the "most 
likely" three-particle distribution function, or density matrix, consistent 
with given f2(i,j)'s takes the form 

3 ] 
l-I f,(i) 1 + ~(j, k) (4.9) f3(1, 2, 3) = =, t.j k=~ 

precisely the "best guess" form suggested by the Kirkwood (1935) 
expansion. This prescription also generalizes trivially to the most likely fq 
for q = 4, 5 , . . . .  Specifically, for q << N, one concludes that the most likely 

fo(i , , . .  ., ig)= I-[ f l(J)  I] [ l+~(k , / )1  (4.10) 
j = i  1 ,...,iq k < l = i  I ,...,i,t 

This argument must, however, fail for q ~ N. Thus, e.g., from the 
viewpoint of Section 2, equation (4.10) clearly involves a neglect of certain 
terms O(he), so that, for q = N, it would be tantamount to ignoring the 
final term 

A 2 Y~ Trkf(k)T(i, k)3,(j, k) (4.11) 
k ~ i , j  

in (2.7). This final term is, however, of order h2(N-2)v/V~-A2nv,  which 
cannot in general be neglected compared to a term like h23~(i,j)7(k, l). 
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5. CONCLUSIONS 

Together with Paper I, this paper has exploited the ideas of information 
theory to define measures of entropy Sp appropriate for an observer who, 
in probing the state of some N-particle system, can measure with arbitrary 
precision all the information buried in the p-particle reduced distribution 
functions, or density matrices, but is completely ignorant of any correlations 
involving more than p particles. On the one hand, this is of interest in 
that it shows that the (often hazy) notion of "coarse graining" can in fact 
be implemented in a fashion both reasonable physically and precise 
mathematically. On the other hand, this is also of interest because of concrete 
applications to the study of phenomena such as galaxy clustering (Kandrup 
1988b, c) and because the basic approach admits an obvious generalization 
to a field-theoretic setting (Hu and Kandrup, 1987; Kandrup, 1987). 

In accord with the conventional approach to nonequilibrium statistical 
mechanics, the analysis has been formulated abstractly in a fashion appli- 
cable either to a classical N-particle distribution function or a quantum 
mechanical N-particle density matrix. All that is really assumed is that the 
N-particle /~ satisfies a Liouville equation Ol~/at =-L/~, which implies 
conservation of probability. At least for the case of mixed states, the 
qualitative results of the analysis are the same in both a classical and a 
quantum setting. However, one may conclude by observing that, for the 
special case of a pure state, the classical and quantum descriptions lead to 
very different physical pictures. 

Classically, a pure state corresponds to the specification of a point in 
the 6N-dimensional phase space. The N-particle /~ then reduces to a 
6N-dimensional delta function, and the reduced f , ' s  reduce to 6p- 
dimensional delta functions. What this means, however, is that, for a pure 
state,/.~ = /~[  for all p. A simple knowledge of where each particle actually 
is--i.e., the forms of the individual fl 's--constitutes a complete description 
of the system; and, as such, the p-particle "coarse grainings" considered 
here entail no information loss. One concludes, therefore, that Sp = SN for 
all p and that dSp/dt=-O. 

Quantum mechanically, the situation is very different. Working in the 
Schr/Sdinger picture in a position representation, a pure state corresponds 
to an N-particle wave function involving 3N coordinates, so that the density 
ma t r ix /~ (1 , . . . ,  N) has a realization 

~3,(X1 , X ~ , . . . ,  XN,  XtN) = []/*(X 1 . . . . .  XN)I~C(X ~ . . . . .  XtN) ( 5 . 1 )  

This means, however, that 

X t f ( i )=  l-[ TrjO*(Xl , . . . ,XN)~(X~, . . . ,  N)[j'=j (5.2) 
j r  
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SO that, in general,  there is no reason to expect that /~  = ~ ~. If, as a special 
case, one were to demand  at some instant o f  time that g be diagonal  in 
the particle variables, i.e., that  

N 
/ z ( x l , . . . ,  xN) = H ~b,(x~) (5.3) 

i = 1  

where 

Tri q~i(xl)~b,(x~) : 1 (5.4) 

it would  follow tha t / z  = /x  1, but  this is clearly an unreasonable  restriction. 
Even if (5.3) were true at that  instant, interparticle correlations would  be 
generated by the evolving dynamics  so that  the special factorizat ion would  
be lost. 

What  this means is that, even if one chooses  initial data  cor responding  
to a pure state, the quan tum entropies Sp defined here and in Paper  I will 
in fact exhibit  a nontrivial time dependence.  One expects that, generally, 
Sp r SN and that  Sp is strictly greater than S p +  1 . 
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